3.2295 \(\int \frac{\sqrt{1-2 x} (3+5 x)^{5/2}}{(2+3 x)^5} \, dx\)

Optimal. Leaf size=151 \[ \frac{\sqrt{1-2 x} (5 x+3)^{7/2}}{4 (3 x+2)^4}-\frac{11 \sqrt{1-2 x} (5 x+3)^{5/2}}{168 (3 x+2)^3}-\frac{605 \sqrt{1-2 x} (5 x+3)^{3/2}}{4704 (3 x+2)^2}-\frac{6655 \sqrt{1-2 x} \sqrt{5 x+3}}{21952 (3 x+2)}-\frac{73205 \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right )}{21952 \sqrt{7}} \]

[Out]

(-6655*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(21952*(2 + 3*x)) - (605*Sqrt[1 - 2*x]*(3 + 5*x)^(3/2))/(4704*(2 + 3*x)^2)
 - (11*Sqrt[1 - 2*x]*(3 + 5*x)^(5/2))/(168*(2 + 3*x)^3) + (Sqrt[1 - 2*x]*(3 + 5*x)^(7/2))/(4*(2 + 3*x)^4) - (7
3205*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/(21952*Sqrt[7])

________________________________________________________________________________________

Rubi [A]  time = 0.0395227, antiderivative size = 151, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 3, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.115, Rules used = {94, 93, 204} \[ \frac{\sqrt{1-2 x} (5 x+3)^{7/2}}{4 (3 x+2)^4}-\frac{11 \sqrt{1-2 x} (5 x+3)^{5/2}}{168 (3 x+2)^3}-\frac{605 \sqrt{1-2 x} (5 x+3)^{3/2}}{4704 (3 x+2)^2}-\frac{6655 \sqrt{1-2 x} \sqrt{5 x+3}}{21952 (3 x+2)}-\frac{73205 \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right )}{21952 \sqrt{7}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[1 - 2*x]*(3 + 5*x)^(5/2))/(2 + 3*x)^5,x]

[Out]

(-6655*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(21952*(2 + 3*x)) - (605*Sqrt[1 - 2*x]*(3 + 5*x)^(3/2))/(4704*(2 + 3*x)^2)
 - (11*Sqrt[1 - 2*x]*(3 + 5*x)^(5/2))/(168*(2 + 3*x)^3) + (Sqrt[1 - 2*x]*(3 + 5*x)^(7/2))/(4*(2 + 3*x)^4) - (7
3205*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/(21952*Sqrt[7])

Rule 94

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/((m + 1)*(b*e - a*f)), x] - Dist[(n*(d*e - c*f))/((m + 1)*(b*e - a*
f)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[
m + n + p + 2, 0] && GtQ[n, 0] &&  !(SumSimplerQ[p, 1] &&  !SumSimplerQ[m, 1])

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sqrt{1-2 x} (3+5 x)^{5/2}}{(2+3 x)^5} \, dx &=\frac{\sqrt{1-2 x} (3+5 x)^{7/2}}{4 (2+3 x)^4}+\frac{11}{8} \int \frac{(3+5 x)^{5/2}}{\sqrt{1-2 x} (2+3 x)^4} \, dx\\ &=-\frac{11 \sqrt{1-2 x} (3+5 x)^{5/2}}{168 (2+3 x)^3}+\frac{\sqrt{1-2 x} (3+5 x)^{7/2}}{4 (2+3 x)^4}+\frac{605}{336} \int \frac{(3+5 x)^{3/2}}{\sqrt{1-2 x} (2+3 x)^3} \, dx\\ &=-\frac{605 \sqrt{1-2 x} (3+5 x)^{3/2}}{4704 (2+3 x)^2}-\frac{11 \sqrt{1-2 x} (3+5 x)^{5/2}}{168 (2+3 x)^3}+\frac{\sqrt{1-2 x} (3+5 x)^{7/2}}{4 (2+3 x)^4}+\frac{6655 \int \frac{\sqrt{3+5 x}}{\sqrt{1-2 x} (2+3 x)^2} \, dx}{3136}\\ &=-\frac{6655 \sqrt{1-2 x} \sqrt{3+5 x}}{21952 (2+3 x)}-\frac{605 \sqrt{1-2 x} (3+5 x)^{3/2}}{4704 (2+3 x)^2}-\frac{11 \sqrt{1-2 x} (3+5 x)^{5/2}}{168 (2+3 x)^3}+\frac{\sqrt{1-2 x} (3+5 x)^{7/2}}{4 (2+3 x)^4}+\frac{73205 \int \frac{1}{\sqrt{1-2 x} (2+3 x) \sqrt{3+5 x}} \, dx}{43904}\\ &=-\frac{6655 \sqrt{1-2 x} \sqrt{3+5 x}}{21952 (2+3 x)}-\frac{605 \sqrt{1-2 x} (3+5 x)^{3/2}}{4704 (2+3 x)^2}-\frac{11 \sqrt{1-2 x} (3+5 x)^{5/2}}{168 (2+3 x)^3}+\frac{\sqrt{1-2 x} (3+5 x)^{7/2}}{4 (2+3 x)^4}+\frac{73205 \operatorname{Subst}\left (\int \frac{1}{-7-x^2} \, dx,x,\frac{\sqrt{1-2 x}}{\sqrt{3+5 x}}\right )}{21952}\\ &=-\frac{6655 \sqrt{1-2 x} \sqrt{3+5 x}}{21952 (2+3 x)}-\frac{605 \sqrt{1-2 x} (3+5 x)^{3/2}}{4704 (2+3 x)^2}-\frac{11 \sqrt{1-2 x} (3+5 x)^{5/2}}{168 (2+3 x)^3}+\frac{\sqrt{1-2 x} (3+5 x)^{7/2}}{4 (2+3 x)^4}-\frac{73205 \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{3+5 x}}\right )}{21952 \sqrt{7}}\\ \end{align*}

Mathematica [A]  time = 0.0552936, size = 79, normalized size = 0.52 \[ \frac{\frac{7 \sqrt{1-2 x} \sqrt{5 x+3} \left (814395 x^3+1285720 x^2+654436 x+105552\right )}{(3 x+2)^4}-219615 \sqrt{7} \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right )}{460992} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[1 - 2*x]*(3 + 5*x)^(5/2))/(2 + 3*x)^5,x]

[Out]

((7*Sqrt[1 - 2*x]*Sqrt[3 + 5*x]*(105552 + 654436*x + 1285720*x^2 + 814395*x^3))/(2 + 3*x)^4 - 219615*Sqrt[7]*A
rcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/460992

________________________________________________________________________________________

Maple [B]  time = 0.01, size = 250, normalized size = 1.7 \begin{align*}{\frac{1}{921984\, \left ( 2+3\,x \right ) ^{4}}\sqrt{1-2\,x}\sqrt{3+5\,x} \left ( 17788815\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ){x}^{4}+47436840\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ){x}^{3}+47436840\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ){x}^{2}+11401530\,{x}^{3}\sqrt{-10\,{x}^{2}-x+3}+21083040\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ) x+18000080\,{x}^{2}\sqrt{-10\,{x}^{2}-x+3}+3513840\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ) +9162104\,x\sqrt{-10\,{x}^{2}-x+3}+1477728\,\sqrt{-10\,{x}^{2}-x+3} \right ){\frac{1}{\sqrt{-10\,{x}^{2}-x+3}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3+5*x)^(5/2)*(1-2*x)^(1/2)/(2+3*x)^5,x)

[Out]

1/921984*(1-2*x)^(1/2)*(3+5*x)^(1/2)*(17788815*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x^4+
47436840*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x^3+47436840*7^(1/2)*arctan(1/14*(37*x+20)
*7^(1/2)/(-10*x^2-x+3)^(1/2))*x^2+11401530*x^3*(-10*x^2-x+3)^(1/2)+21083040*7^(1/2)*arctan(1/14*(37*x+20)*7^(1
/2)/(-10*x^2-x+3)^(1/2))*x+18000080*x^2*(-10*x^2-x+3)^(1/2)+3513840*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10
*x^2-x+3)^(1/2))+9162104*x*(-10*x^2-x+3)^(1/2)+1477728*(-10*x^2-x+3)^(1/2))/(-10*x^2-x+3)^(1/2)/(2+3*x)^4

________________________________________________________________________________________

Maxima [A]  time = 1.90399, size = 212, normalized size = 1.4 \begin{align*} \frac{73205}{307328} \, \sqrt{7} \arcsin \left (\frac{37 \, x}{11 \,{\left | 3 \, x + 2 \right |}} + \frac{20}{11 \,{\left | 3 \, x + 2 \right |}}\right ) + \frac{3025}{16464} \, \sqrt{-10 \, x^{2} - x + 3} + \frac{{\left (-10 \, x^{2} - x + 3\right )}^{\frac{3}{2}}}{84 \,{\left (81 \, x^{4} + 216 \, x^{3} + 216 \, x^{2} + 96 \, x + 16\right )}} - \frac{125 \,{\left (-10 \, x^{2} - x + 3\right )}^{\frac{3}{2}}}{1176 \,{\left (27 \, x^{3} + 54 \, x^{2} + 36 \, x + 8\right )}} + \frac{1815 \,{\left (-10 \, x^{2} - x + 3\right )}^{\frac{3}{2}}}{10976 \,{\left (9 \, x^{2} + 12 \, x + 4\right )}} - \frac{22385 \, \sqrt{-10 \, x^{2} - x + 3}}{65856 \,{\left (3 \, x + 2\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^(5/2)*(1-2*x)^(1/2)/(2+3*x)^5,x, algorithm="maxima")

[Out]

73205/307328*sqrt(7)*arcsin(37/11*x/abs(3*x + 2) + 20/11/abs(3*x + 2)) + 3025/16464*sqrt(-10*x^2 - x + 3) + 1/
84*(-10*x^2 - x + 3)^(3/2)/(81*x^4 + 216*x^3 + 216*x^2 + 96*x + 16) - 125/1176*(-10*x^2 - x + 3)^(3/2)/(27*x^3
 + 54*x^2 + 36*x + 8) + 1815/10976*(-10*x^2 - x + 3)^(3/2)/(9*x^2 + 12*x + 4) - 22385/65856*sqrt(-10*x^2 - x +
 3)/(3*x + 2)

________________________________________________________________________________________

Fricas [A]  time = 1.59671, size = 365, normalized size = 2.42 \begin{align*} -\frac{219615 \, \sqrt{7}{\left (81 \, x^{4} + 216 \, x^{3} + 216 \, x^{2} + 96 \, x + 16\right )} \arctan \left (\frac{\sqrt{7}{\left (37 \, x + 20\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{14 \,{\left (10 \, x^{2} + x - 3\right )}}\right ) - 14 \,{\left (814395 \, x^{3} + 1285720 \, x^{2} + 654436 \, x + 105552\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{921984 \,{\left (81 \, x^{4} + 216 \, x^{3} + 216 \, x^{2} + 96 \, x + 16\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^(5/2)*(1-2*x)^(1/2)/(2+3*x)^5,x, algorithm="fricas")

[Out]

-1/921984*(219615*sqrt(7)*(81*x^4 + 216*x^3 + 216*x^2 + 96*x + 16)*arctan(1/14*sqrt(7)*(37*x + 20)*sqrt(5*x +
3)*sqrt(-2*x + 1)/(10*x^2 + x - 3)) - 14*(814395*x^3 + 1285720*x^2 + 654436*x + 105552)*sqrt(5*x + 3)*sqrt(-2*
x + 1))/(81*x^4 + 216*x^3 + 216*x^2 + 96*x + 16)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)**(5/2)*(1-2*x)**(1/2)/(2+3*x)**5,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 3.21678, size = 512, normalized size = 3.39 \begin{align*} \frac{14641}{614656} \, \sqrt{70} \sqrt{10}{\left (\pi + 2 \, \arctan \left (-\frac{\sqrt{70} \sqrt{5 \, x + 3}{\left (\frac{{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{140 \,{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}}\right )\right )} - \frac{73205 \,{\left (3 \, \sqrt{10}{\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}^{7} + 3080 \, \sqrt{10}{\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}^{5} + 1144640 \, \sqrt{10}{\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}^{3} - 65856000 \, \sqrt{10}{\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}\right )}}{32928 \,{\left ({\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}^{2} + 280\right )}^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^(5/2)*(1-2*x)^(1/2)/(2+3*x)^5,x, algorithm="giac")

[Out]

14641/614656*sqrt(70)*sqrt(10)*(pi + 2*arctan(-1/140*sqrt(70)*sqrt(5*x + 3)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(2
2))^2/(5*x + 3) - 4)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))) - 73205/32928*(3*sqrt(10)*((sqrt(2)*sqrt(-10*x + 5
) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^7 + 3080*sqrt(10)*((sqrt(2
)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^5 + 114464
0*sqrt(10)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sq
rt(22)))^3 - 65856000*sqrt(10)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*
sqrt(-10*x + 5) - sqrt(22))))/(((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*
sqrt(-10*x + 5) - sqrt(22)))^2 + 280)^4